Background:Lung adenocarcinoma (LUAD) is the main histological subtype of lung cancer. However, the molecular mechanism underlying LUAD is not yet clearly defined, but elucidating this process in detail would be of great significance for clinical diagnosis and treatment. Our aim is to identify the candidate key genes and pathways associated with diagnosis and prognosis in LUAD.Methods:In this study, three gene expression profiles GSE118370, GSE32863 and GSE43458 were retrieved from Gene Expression Omnibus database (GEO), and the common differentially expressed genes (DEGs) were identified by online GEO2R analysis tool. Subsequently, the enrichment analysis of function and signaling pathways of DEGs in LUAD were performed by gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis. The protein-protein interaction (PPI) networks of the DEGs were established through the Search Tool for the Retrieval of Interacting Genes (STRING) database and hub genes were screened by plug-in CytoHubba in Cytoscape. Afterwards, the miRNAs and the hub genes network was constructed via miRWalk. Finally, receiver operating characteristic (ROC) curve and Kaplan-Meier plotter were performed to analyze the diagnosis and prognosis efficacy of hub genes. Results: A total of 311 DEGs were identified, including 74 up-regulated and 238 down-regulated genes. GO analysis results showed that DEGs were mainly enriched in biological processes including composition of extracellular matrix, regulation of angiogenesis and so on. KEGG analysis results revealed DEGs were mainly enrolled in cell adhesion signaling pathway. Subsequently, 10 hub genes, CDC20, CENPF, TPX2, TOP2A, KIAA0101, CDCA7, ASPM, ECT2, UBE2T and COL1A1, were identified. And TOP2A, CDCA7, TPX2 and COL1A1 showed strong relationships with each other and the miRNAs nearby in miRNAs-mRNA network obtained by miRWalk website. Finally, all these 10 hub genes were found significantly related to the diagnosis and prognosis of LUAD (p<0.05). Conclusions: The identification of hub genes in this study will help us to understand the pathogenesis of LUAD, especially the molecular mechanisms of its development. Our results suggested that TOP2A, CDCA7, TPX2 and COL1A1 might present predictive value for the development and prognosis in LUAD, and might be used as potential molecular markers for the diagnosis and treatment of LUAD.