Histomorphometry is useful in the assessment of trabecular bone mass (TBM), and thus, in the estimation of the prevalence and intensity of osteopenia in ancient population groups. However, it is a destructive method. It is therefore necessary to explore the accuracy of nondestructive approaches, such as radiography, bone mineral density (BMD) assessed by double-energy X-ray absorptiometry (DEXA), bone density (BD), or optical density (OD) in the diagnosis of osteopenia. We selected 51 vertebrae out of a total sample composed of 333 T12, L1, and L2 vertebrae belonging to adult pre-Hispanic inhabitants from El Hierro. These vertebrae underwent histomorphometrical analysis, a fine-grained film radiography with assessment of trabecular pattern following standard methods, OD, DEXA-assessed BMD, and BD. The presence of biconcave vertebrae and wedge-shaped vertebrae was also assessed by measuring anterior height (a), posterior height (p), and height at the middle point of the vertebral body (m), and further calculating the indices 2m/(a + p) ("spine score") and a/p. Significant correlations were observed between TBM and BMD (r=0.43), TBM and BD (r=0.49), TBM and OD (r=0.52), BMD and OD (r=0.51), and BMD and BD (r=0.36), but not between TBM and the indices 2m/(a + p) and a/p. In the stepwise multiple correlation analysis between TBM and BMD, BD, and OD, OD entered into first place and BD into second place, whereas BMD became displaced; the multiple correlation coefficient was 0.63, with a standard error of 3.78. A BMD greater than 0.60 g/cm2, or a bone density greater than 0.60 g/cm3, excluded osteopenia (TBM <15%) with a specificity greater than 90%, whereas a BMD value less than 0.35 g/cm2, a BD less than 0.35 g/cm3, or optical density >1.6 excluded a normal bone mass (TBM >20%) with a specificity greater than 90%. Based on radiographic criteria on the total sample, we also conclude that the overall prevalence of vertebral fractures in the adult pre-Hispanic population of El Hierro of any age is 7.5%.