Abstract:define a 2-category U such that the split Grothendieck group K 0 (U ) is isomorphic to an integral version of the quantized universal enveloping algebra U(sl n ), n ≥ 2. Beliakova-Habiro-Lauda-Webster [2] prove that the trace decategorification Tr(U ) of the Khovanov-Lauda 2-category is isomorphic to the the current algebra U(sl n [t]) -the universal enveloping algebra of the Lie algebra sl n ⊗ C[t]. A 2-representation of U is a 2-functor from U to a linear, additive 2-category. In this note we are interested … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.