One strategy for distinguishing smooth structures on closed 4‐manifolds is to produce a knot in that is slice in one smooth filling of but not slice in some homeomorphic smooth filling . In this paper, we explore how 0‐surgery homeomorphisms can be used to potentially construct exotic pairs of this form. To systematically generate a plethora of candidates for exotic pairs, we give a fully general construction of pairs of knots with the same zero surgeries. By computer experimentation, we find five topologically slice knots such that, if any of them were slice, we would obtain an exotic 4‐sphere. We also investigate the possibility of constructing exotic smooth structures on in a similar fashion.