Stalked crinoids have long been considered sessile. In the 1980s, however, observations both in the field and of laboratory experiments proved that some of them (isocrinids) can actively relocate by crawling with their arms on the substrate, and dragging the stalk behind them. Although it has been argued that this activity may leave traces on the sediment surface, no photographs or images of the traces produced by crawling crinoids have been available. Herein, we present results of neoichnological experiments using the shallowest species of living stalked crinoid, Metacrinus rotundus, dredged from Suruga Bay (near the town of Numazu, Shizuoka Prefecture, * 140 m depth). Our results demonstrate that isocrinids produce characteristic locomotion traces, which have some preservation potential. They are composed of rather deep and wide, sometimes weakly sinuous, central drag marks left by the stalk and cirri, and short, shallow scratch marks made by the arms. Based on the functional morphology and taphonomy, it has been argued that the ability to autotomize the stalk and relocate had already evolved in the oldest stem-group isocrinids (holocrinids), likely in response to increased benthic predation pressure during the so-called Mesozoic marine revolution. Our data show that this hypothesis may be corroborated in the future by ichnological findings, which may provide more direct proof of active locomotion in Triassic holocrinids.