Optimal nutrient supply in the digester is essential for efficient biogas production. The aim of this study was to analyze the effects of various micro‐ and macronutrients on the process stability by a field test. The digestates of 25 biogas plants across the federal state of Baden‐Württemberg, Germany, were investigated. Collected data including trace elements, macronutrients, and volatile fatty acids (VFA) concentrations, as well as the organic loading rate and hydraulic retention time were subjected to statistical analysis. High variations in the concentrations within the different biogas plants were observed. Statistically significant effects of substrate constituents and process parameters on the stability of the anaerobic digestion process were found. Several micro‐ and macronutrients and the relationships between these elements, as well as the process parameters propionic acid, acetic acid, and acetic acid equivalent were tested. Ni, Mo, and S had a consistent statistically significant effect, while the organic loading rate and Se only showed an effect limited to the acetic acid concentration and the acetic acid equivalent. No statistically significant effect could be shown for Fe, Co, and Na. Most of the significant interactions between the tested elements contained Ni, Fe, and Co. This shows that a balanced relation between the concentrations of these elements is of greater importance than the presence of individual elements for a digester to be able to operate at high organic loading rates and maintain low VFA concentrations.