2018
DOI: 10.1038/s41598-018-28976-9
|View full text |Cite
|
Sign up to set email alerts
|

Traces Of Laboratory Earthquake Nucleation In The Spectrum Of Ambient Noise

Abstract: The short-term forecast of earthquakes associated with fault rupture is a challenge in seismology and rock mechanics. The evolution of mechanical characteristics of a local fault segment may be encoded in the ambient noise, thus, converting the ambient noise to an efficient source of information about the fault stress-strain conditions. In laboratory experiments we investigate micro-vibrations of a block-fault system induced by weak external disturbances with the purpose of getting reliable evidence of how the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
3
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(4 citation statements)
references
References 55 publications
0
3
0
1
Order By: Relevance
“…But most importantly, the state variables that encapsulate the evolutionary effects originate from measurable physical quantities, may it be the real area of contact (Aharonov & Scholz, 2018, 2019; Bar‐Sinai et al., 2014; Barbot, 2019b, 2022; Boitnott et al., 1992; Bowden & Tabor, 1964; Sleep, 2006) or the porosity (J. Chen, 2023; J. Chen & Spiers, 2016; J. Chen et al., 2017; Sleep, 2005). The evolving texture of the fault gouge influences other observables, including fluid permeability (Im et al., 2019; Proctor et al., 2020), electrical conductivity (Yamashita et al., 2014), acoustic transmissivity (Fukuyama et al., 2019; Kocharyan et al., 2018; Nagata et al., 2008, 2012; Rouet‐Leduc et al., 2018), optical transparency and reflectivity (Bayart et al., 2018; Ben‐David et al., 2010; Dieterich & Kilgore, 1994; Rubinstein et al., 2004; Selvadurai & Glaser, 2015, 2017), fault compaction and dilatancy (Carpenter, Ikari, & Marone, 2016; Marone et al., 1990), and the density of off‐fault damage (Goebel et al., 2014). Hence, these physical quantities can serve as proxies for state variables in nature or in the laboratory, potentially explaining subtle changes in crustal properties shortly before and after earthquakes (Brenguier et al., 2008; Kato & Ben‐Zion, 2021; Y. Li et al., 1998).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…But most importantly, the state variables that encapsulate the evolutionary effects originate from measurable physical quantities, may it be the real area of contact (Aharonov & Scholz, 2018, 2019; Bar‐Sinai et al., 2014; Barbot, 2019b, 2022; Boitnott et al., 1992; Bowden & Tabor, 1964; Sleep, 2006) or the porosity (J. Chen, 2023; J. Chen & Spiers, 2016; J. Chen et al., 2017; Sleep, 2005). The evolving texture of the fault gouge influences other observables, including fluid permeability (Im et al., 2019; Proctor et al., 2020), electrical conductivity (Yamashita et al., 2014), acoustic transmissivity (Fukuyama et al., 2019; Kocharyan et al., 2018; Nagata et al., 2008, 2012; Rouet‐Leduc et al., 2018), optical transparency and reflectivity (Bayart et al., 2018; Ben‐David et al., 2010; Dieterich & Kilgore, 1994; Rubinstein et al., 2004; Selvadurai & Glaser, 2015, 2017), fault compaction and dilatancy (Carpenter, Ikari, & Marone, 2016; Marone et al., 1990), and the density of off‐fault damage (Goebel et al., 2014). Hence, these physical quantities can serve as proxies for state variables in nature or in the laboratory, potentially explaining subtle changes in crustal properties shortly before and after earthquakes (Brenguier et al., 2008; Kato & Ben‐Zion, 2021; Y. Li et al., 1998).…”
Section: Discussionmentioning
confidence: 99%
“…Chen et al, 2017;Sleep, 2005). The evolving texture of the fault gouge influences other observables, including fluid permeability (Im et al, 2019;Proctor et al, 2020), electrical conductivity (Yamashita et al, 2014), acoustic transmissivity (Fukuyama et al, 2019;Kocharyan et al, 2018;Nagata et al, 2008Nagata et al, , 2012Rouet-Leduc et al, 2018), optical transparency and reflectivity (Bayart et al, 2018;Ben-David et al, 2010;Dieterich & Kilgore, 1994;Rubinstein et al, 2004;Selvadurai & Glaser, 2015, fault compaction and dilatancy (Carpenter, Ikari, & Marone, 2016;Marone et al, 1990), and the density of off-fault damage (Goebel et al, 2014). Hence, these physical quantities can serve as proxies for state variables in nature or in the laboratory, potentially explaining subtle changes in crustal properties shortly before and after earthquakes (Brenguier et al, 2008;Kato & Ben-Zion, 2021;Y.…”
Section: Discussionmentioning
confidence: 99%
“…Vibration (acceleration) monitoring and detection are extremely important for engineering structural health, geological prospecting, space flight and aviation, and so on [1][2][3]. Compared with traditional vibration accelerometers based on piezoelectric or microelectromechanical systems (MEMS), optic-fiber based sensing techniques possess the advantages including high sensitivity, compact size, immunization to electromagnetic, remote sensing and resistance to hash environment.…”
mentioning
confidence: 99%
“…В последнее десятилетие сформировалась гипотеза о том, что при переходе очаговой области будущего землетрясения в метастабильное состояние механические характеристики разломной зоны должны заметно изменяться, а в последние годы эта гипотеза была подтверждена и экспериментально [1,2]. Если этот эффект имеет место в натурных условиях, то может существовать возможность инструментального контроля изменений напряженнодеформированного состояния разломной зоны на заключительной стадии подготовки землетрясения.…”
unclassified