Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
OBJECTIVES Tracheal reconstruction post-extensive resection remains an unresolved challenge in thoracic surgery. This study evaluates the use of aortic allografts (AAs) for tracheal replacement and reconstruction in a rat model, aiming to elucidate the underlying mechanisms of tracheal regeneration. METHODS AAs from female rats were employed for tracheal reconstruction in 36 male rats, with the replacement exceeding half of the tracheal length. To avert collapse, silicone stents were inserted into the AA lumens. No immunosuppressive therapy was administered. The rats were euthanized biweekly, and the AAs were examined for neovascularization, cartilage formation, respiratory epithelial ingrowth, submucosal gland regeneration, and the presence of the SRY gene. RESULTS All procedures were successfully completed without severe complications. The AA segments were effectively integrated into the tracheal framework, with seamless distinction at suture lines. Histological analysis indicated an initial inflammatory response, followed by the development of squamous and mucociliary epithelia, new cartilage ring formation, and gland regeneration. In situ hybridization identified the presence of the SRY gene in newly formed cartilage rings, confirming that regeneration was driven by recipient cells. CONCLUSIONS This study demonstrates the feasibility of AAs transforming into functional tracheal conduits, replicating the main structural and functional characteristics of the native trachea. The findings indicate that this approach offers a novel pathway for tissue regeneration and holds potential for treating extensive tracheal injuries.
OBJECTIVES Tracheal reconstruction post-extensive resection remains an unresolved challenge in thoracic surgery. This study evaluates the use of aortic allografts (AAs) for tracheal replacement and reconstruction in a rat model, aiming to elucidate the underlying mechanisms of tracheal regeneration. METHODS AAs from female rats were employed for tracheal reconstruction in 36 male rats, with the replacement exceeding half of the tracheal length. To avert collapse, silicone stents were inserted into the AA lumens. No immunosuppressive therapy was administered. The rats were euthanized biweekly, and the AAs were examined for neovascularization, cartilage formation, respiratory epithelial ingrowth, submucosal gland regeneration, and the presence of the SRY gene. RESULTS All procedures were successfully completed without severe complications. The AA segments were effectively integrated into the tracheal framework, with seamless distinction at suture lines. Histological analysis indicated an initial inflammatory response, followed by the development of squamous and mucociliary epithelia, new cartilage ring formation, and gland regeneration. In situ hybridization identified the presence of the SRY gene in newly formed cartilage rings, confirming that regeneration was driven by recipient cells. CONCLUSIONS This study demonstrates the feasibility of AAs transforming into functional tracheal conduits, replicating the main structural and functional characteristics of the native trachea. The findings indicate that this approach offers a novel pathway for tissue regeneration and holds potential for treating extensive tracheal injuries.
Patients with long‐segment tracheal defects, deemed technically inoperable, constitute a population in critical need of airway replacement. Regardless of the underlying cause—be it benign or malignant processes—this patient category requires either a tracheal transplant or admission to a palliative care facility. Despite over 50 years of exploration in thoracic surgery and regenerative medicine, airway transplantation remains a significant challenge. Various tracheobronchial substitutes, such as synthetic prostheses, bioprostheses, allografts, autografts, and bioengineered conduits, have been experimentally tested, yet none have provided a standardized method for airway replacement. Aortic grafts were suggested by Aortic grafts have been suggested as a biological matrix for extensive airway reconstruction as a biological matrix for extensive airway reconstruction. Cryopreserved aortic allografts, because of their availability in tissue banks and the lack of need for immunosuppressive therapy, were first used in clinical applications. The TRITON‐01 study (NCT04263129) focuses on patients who received airway replacement to determine the routine applicability of this novel approach. The primary objective of this review is to provide information on advancements in the use of aortic allografts as tracheal replacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.