Strong phenotype-genotype associations have been reported across brain diseases. However, understanding underlying gene regulatory mechanisms remains challenging, especially at the cellular level. To address this, we integrated the multi-omics data at the cellular resolution of the human brain: cell-type chromatin interactions, epigenomics and single cell transcriptomics, and predicted cell-type gene regulatory networks linking transcription factors, distal regulatory elements and target genes (e.g., excitatory and inhibitory neurons, microglia, oligodendrocyte). Using these cell-type networks and disease risk variants, we further identified the cell-type disease genes and regulatory networks for schizophrenia and Alzheimer's disease. The celltype regulatory elements (e.g., enhancers) in the networks were also found to be potential pleiotropic regulatory loci for a variety of diseases. Further enrichment analyses including gene ontology and KEGG pathways revealed potential novel cross-disease and disease-specific molecular functions, advancing knowledge on the interplays among genetic, transcriptional and epigenetic risks at the cellular resolution between neurodegenerative and neuropsychiatric diseases. Finally, we summarized our computational analyses as a general-purpose pipeline for predicting gene regulatory networks via multi-omics data.Recent analyses have also revealed that brain disease risk variants are located in non-coding regulatory elements (e.g., enhancers) and that the risk genes likely have cell-type specific effects including neuronal and non-neuronal types [25,26]. In addition, recent single-cell studies 68 TFs,