Abstract. Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (sub)mm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20 • . The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67 · 10 −7 M and 4.10 · 10 −2 M , six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4 . . . 2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplanetary discs (0.1 M . . . 0.001 M ) the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67 · 10 −6 M and trace gaps in discs with 2.67 · 10 −4 M with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of magnetic fields [1]. We also find, that zonal flows resulting from magneto-rotational instability (MRI) create gap-like structures in the disc re-emission radiation which are observable with ALMA. Through the unprecedented resolution and sensitivity of ALMA in the (sub)mm wavelength range the expected detailed observations of planet-disc interaction and global disc structures will deepen our understanding of the planet formation and disc evolution process. This article presents a summary of the study published by [2] a