Abstract. In order to determine the origins of dissolved organic matter (DOM) occurring in coastal seawater of the Sihwa Lake, South Korea, which is semi-enclosed by a dyke, we measured the stable carbon isotopic ratio of dissolved organic carbon (DOC-δ13C) and optical properties (absorbance and fluorescence) of the DOM in two different seasons (March 2017 and September 2018). The concentrations of DOC were generally higher in lower-salinity waters in both periods, while a significant excess of DOC was observed in 2017 in the same salinity range. The main source of DOC, dependent on salinity, was found to be from marine sediments in the freshwater-seawater mixing zone rather than from terrestrial sources based on the DOC-δ13C values (−20.7±1.2 ‰) and good correlations among DOC, humic-like fluorescent DOM (FDOMH), and NH4+ concentrations. However, the excess DOC observed in 2017 seems to originate from terrestrial sources by direct land-seawater interactions rather than from in-situ biological production, considering the lower DOC-δ13C values (−27.8 ‰ to −22.6 ‰) and higher spectral slope ratio (SR) of light absorbance, without increases in FDOMH and NH4+ concentrations. This terrestrial DOM source could have been exposed to light and bacterial degradation for a long time, resulting in nonfluorescent and low-molecular-weight DOM, as this study area is surrounded by the reclaimed land. Our results suggest that the combination of these biogeochemical tools can be a powerful tracer of coastal DOM sources.