Abstract. This study introduces an observation-based dust identification approach and applies it to reconstruct longterm dust climatology in the western United States. Longterm dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population) or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1) high PM 10 concentrations; (2) low PM 2.5 /PM 10 ratio; (3) higher concentrations and percentage of crustal elements; (4) lower percentage of anthropogenic pollutants; and (5) low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado). During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000- The monthly frequency of dust events shows a peak from March to July and a second peak in autumn from September to November. The large quantity of dust events occurring in summertime also suggests the prevailing impact of windblown dust across the year. This seasonal variation is consistent with previous model simulations over the United States.