BackgroundFew studies have investigated the effects of repeated sessions of transcranial direct current stimulation (tDCS) combined with concurrent cognitive training on improving response inhibition, and the findings have been heterogeneous in the limited research. This study investigated the long-lasting and transfer effects of 10 consecutive sessions of multitarget anodal HD-tDCS combined with concurrent cognitive training on improving response inhibition compared with multitarget stimulation or training alone.MethodsNinety-four healthy university students aged 18–25 were randomly assigned to undergo different interventions, including real stimulation combined with stop-signal task (SST) training, real stimulation, sham stimulation combined with SST training, and sham stimulation. Each intervention lasted 20 min daily for 10 consecutive days, and the stimulation protocol targeted right inferior frontal gyrus (rIFG) and pre-supplementary motor area (pre-SMA) simultaneously with a total current intensity of 2.5 mA. Performance on SST and possible transfer effects to Stroop task, attention network test, and N-back task were measured before and 1 day and 1 month after completing the intervention course.ResultsThe main findings showed that the combined protocol and the stimulation alone significantly reduced stop-signal reaction time (SSRT) in the post-intervention and follow-up tests compared to the pre-intervention test. However, training alone only decreased SSRT in the post-test. The sham control exhibited no changes. Subgroup analysis revealed that the combined protocol and the stimulation alone induced a decrease in the SSRT of the low-performance subgroup at the post-test and follow-up test compared with the pre-test. However, only the combined protocol, but not the stimulation alone, improved the SSRT of the high-performance subgroup. The transfer effects were absent.ConclusionThis study provides supportive evidence for the synergistic effect of the combined protocol, indicating its superiority over the single intervention method. In addition, the long-term after-effects can persist for up to at least 1 month. Our findings also provide insights into the clinical application and strategy for treating response inhibition deficits.