Acari harbor numerous minute species of agricultural economic importance, mainly Tetranychidae and Phytoseiidae. Great efforts have been established by means of recovering morphological, molecular, and phylogenetic traits for species identification. Traditional identification still relies on external diagnostic characters, which are limited and usually exhibit large phenotypic plasticity within the species, rendering them useless for species delimitation and identification. We decided to increase the number of sequences of the Acari mitochondrial COI (Cytochrome C oxidase I) marker and ITS nuclear ribosomal DNA region for species identification in Tetranychidae and Phytoseiidae. The molecular data allow us to establish species boundaries and phylogenetic relationships among several clades of Acari, mainly Tetranychidae and Phytoseiidae. Sequence comparisons between complete COI and the Acari mitochondrial COI, ITS1-5,8S-ITS2, and ITS2 among all Acari sequences have demonstrated that the selected regions, even small, gave enough informative positions for both species’ identification and phylogenetic studies. Analyses of both DNA regions have unveiled their use as species identification characters, with special emphasis on Acari mitochondrial COI for Tetranychidae and Phytoseiidae species in comparison with the Folmer fragment, which has been universally used as a barcode marker. We demonstrated that the Acari mitochondrial COI region is also a suitable marker to establish a barcode dataset for Acari identification. Our phylogenetic analyses are congruent with other recent works, showing that Acari is a monophyletic group, of which Astigmata, Ixodida, Mesostigmata, Oribatida, and Prostigmata are also monophyletic.