Micro-computed tomography (CT) of ancient Chinese glass dragonfly eye beads has enabled detailed exploration of their internal structures, contributing to our understanding of their manufacture. Segmentation of these CT images is essential but challenging due to variation in grayscale values and the presence of bubbles. This study introduces a U-Net-based model called EBV-SegNet, which enables efficient and accurate segmentation and visualization of these beads. We developed, trained, and tested the model using a dataset comprising four typical Shampula dragonfly eye beads, and the results demonstrated high-precision segmentation and precise delineation of the beads’ complex structures. These segmented data were further analyzed using the Visualization Toolkit for advanced volume rendering and reconstruction. Our application of EBV-SegNet to Shampula beads suggests the likelihood of two distinct manufacturing techniques, underscoring the potential of the model for enhancing the analysis of cultural artifacts using three-dimensional visualization and deep learning.