Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of extraskeletal bone, or heterotopic ossification (HO), in soft connective tissues such as skeletal muscle. All familial and sporadic cases with a classic clinical presentation of FOP carry a gain-of-function mutation (R206H; c.617 G > A) in ACVR1, a cell surface receptor that mediates bone morphogenetic protein (BMP) signaling. The BMP signaling pathway is recognized for its chondro/osteogenic-induction potential, and HO in FOP patients forms ectopic but qualitatively normal endochondral bone tissue through misdirected cell fate decisions by tissue-resident mesenchymal stem cells. In addition to biochemical ligand-receptor signaling, mechanical cues from the physical environment are transduced to activate intracellular signaling, a process known as mechanotransduction, and can influence cell fates. Utilizing an established mesenchymal stem cell model of mouse embryonic fibroblasts (MEFs) from the Acvr1 R206H/+ mouse model that mimics the human disease, we demonstrated that activation of the mechanotransductive effectors Rho/ROCK and YAP1 are increased in Acvr1 R206H/+ cells. We show that on softer substrates, a condition associated with low mechanical signaling, the morphology of Acvr1 R206H/+ cells is similar to the morphology of control Acvr1 +/+ cells on stiffer substrates, a condition that activates mechanotransduction. We further determined that Acvr1 R206H/+ cells are poised for osteogenic differentiation, expressing increased levels of chondro/osteogenic markers compared with Acvr1 +/+ cells. We also identified increased YAP1 nuclear localization in Acvr1 R206H/+ cells, which can be rescued by either BMP inhibition or Rho antagonism. Our results establish RhoA and YAP1 signaling as modulators of mechanotransduction in FOP and suggest that aberrant mechanical signals, combined with and as a result of the increased BMP pathway signaling through mutant ACVR1, lead to misinterpretation of the cellular microenvironment and a heightened sensitivity to mechanical stimuli that promotes commitment of Acvr1 R206H/+ progenitor cells to chondro/osteogenic lineages.
Generation of mouse embryonic fibroblasts and cell cultureKnock-in Acvr1 R206H/+ MEFs were isolated at embryonic day 13.5 (E13.5) as previously described (43) from mice described in Chakkalakal and colleagues. (41) Genotypes of cell lines (MEFs) and presence of the R206H mutation were confirmed by PCR (primers in Supplemental Table S1). Acvr1 +/+ controls were littermates that did not contain an Acvr1 R206H allele. Cells were cultured in Dulbecco's modified Eagle's medium, high glucose (DMEM, Gibco, Thermo Fisher Scientific,