We studied phenolic metabolism and plant growth in birch seedlings at the beginning of their development by inhibiting phenylalanine ammonia lyase (PAL), which is the first committed step in phenylpropanoid metabolism. Betula pubescens (Ehrh.) seeds were germinated in inhibitor-free media and the seedlings were transferred to hydroponic culture at the cotyledon stage. They were 6 days old at the start of the experiment, which lasted for 3 weeks. PAL activity was inhibited by three different concentrations of 2-aminoindane-2-phosphonic acid monohydrate (AIP) in the growing media. At the end of 3 weeks, phenolics in all plant parts (roots, stem, cotyledons, first, second and third true leaves) were determined. AIP inhibited strongly the accumulation of phenolic acids, salidroside, rhododendrins, ellagitannins and their precursors, flavan-3-ols, and soluble condensed tannins. The accumulation of lignin and flavonol glycoside derivatives was moderately inhibited. The accumulation of flavonol glycosides, such as quercetin glycosides and kaempferol glycosides, was not generally inhibited, even in leaves that emerged during the experiment, while the accumulation of insoluble condensed tannins was inhibited only slightly and not in all plant parts. This suggests that flavonol glycosides, which may have a UV-B protective role, and insoluble condensed tannins, which may have structural functions, are prioritized in seedling development. Inhibition of PAL with AIP decreased seedling growth and possible reasons for this are discussed.
AbbreviationsAIP 2-Aminoindane-2-phosphonic acid monohydrate PAL Phenylalanine ammonia lyase Phe L-Phenylalanine Trp L-Tryptophan Tyr L-Tyrosine Communicated by P. von Aderkas. Electronic supplementary material The online version of this article (