Hexavalent chromium [Cr(VI)] is highly toxic, carcinogenic, and mutagenic to living organisms. In this paper, the reduction of Cr(VI) to the much less toxic trivalent state [Cr(III)] was studied at polyaniline films grown to different thickness. Much higher rates of Cr(VI) reduction were observed for the "thick" polyaniline films. This was explained in terms of the morphology of the polymer and the higher surface area of polymer in contact with the Cr(VI) solution. For "thin" polyaniline films, the Cr(VI) reduction reaction was found to obey pseudo-first-order kinetics for the duration of exposure. However, in the case of thick polyaniline layers, the Cr(VI) reduction reaction followed a twostage process, with each stage obeying pseudo-firstorder kinetics. This was explained in terms of oxidation of the polymer from the leucoemeraldine to the emeraldine state and then further oxidation of the polymer from the emeraldine to the pernigraniline state. Much higher rates of Cr(VI) reduction were observed on oxidation of the polymer from the leucoemeraldine to the emeraldine state.