The distribution of recurrence times or return intervals between extreme events is important to characterize and understand the behavior of physical systems and phenomena in many disciplines. It is well known that many physical processes in nature and society display long-range correlations. Hence, in the last few years, considerable research effort has been directed towards studying the distribution of return intervals for long-range correlated time series. Based on numerical simulations, it was shown that the return interval distributions are of stretched exponential type. In this paper, we obtain an analytical expression for the distribution of return intervals in long-range correlated time series which holds good when the average return intervals are large. We show that the distribution is actually a product of power law and a stretched exponential form. We also discuss the regimes of validity and perform detailed studies on how the return interval distribution depends on the threshold used to define extreme events.