2017
DOI: 10.15446/dyna.v84n202.61650
|View full text |Cite
|
Sign up to set email alerts
|

Traffic modelling of the video-on-demand service through NS-3

Abstract: La principal característica del servicio de video bajo demanda a través de la tecnología de video streaming es el consumo de grandes anchos de banda, por lo que los planificadores de redes deben considerar este servicio en el momento de dimensionar dichas redes. Para alcanzar esta meta, una de las herramientas es la ingeniería de tráfico y sus modelos asociados. Así, este artículo presenta un modelo de tráfico basado en la simulación por eventos discretos y desarrollado a través del software de código abierto … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…Based on the acquisition of the three-phase output current energy value, the decision table was established, and the rough set method was used to simplify the decision table, which not only can diagnose faults but also has good performance. Adaptability: literature [11] used a combination of wavelet analysis and neural network diagnosis method for the rectifier fault of HXDl heavy-haul freight locomotive. First, the fault feature vector of the rectifier output voltage waveform was extracted by wavelet analysis, and then the BP neural network was improved based on a genetic algorithm.…”
Section: Related Workmentioning
confidence: 99%
“…Based on the acquisition of the three-phase output current energy value, the decision table was established, and the rough set method was used to simplify the decision table, which not only can diagnose faults but also has good performance. Adaptability: literature [11] used a combination of wavelet analysis and neural network diagnosis method for the rectifier fault of HXDl heavy-haul freight locomotive. First, the fault feature vector of the rectifier output voltage waveform was extracted by wavelet analysis, and then the BP neural network was improved based on a genetic algorithm.…”
Section: Related Workmentioning
confidence: 99%
“…Tercero, por la existencia de LENA que permite el estudio de LTE sobre ns-3. Cuarto, por la capacidad de graficar los resultados, esta herramienta posee módulos para la generación de estadísticas gráficas que pueden ser manipuladas desde el mismo simulador o exportadas a algún procesador especializado [15].…”
Section: Introductionunclassified