The built environment’s impact on human activities has been a hot issue in urban research. Compared to motorized spaces, the built environment of pedestrian and cycling street spaces dramatically influences people’s travel experience and travel mode choice. The streets’ built environment data play a vital role in urban design and management. However, the multi-source, heterogeneous, and massive data acquisition methods and tools for the built environment have become obstacles for urban design and management. To better realize the data acquisition and for deeper understanding of the urban built environment, this study develops a new portable, low-cost Arduino-based multi-sensor array integrated into a single portable unit for built environment measurements of street cycling spaces. The system consists of five sensors and an Arduino Mega board, aimed at measuring the characteristics of the street cycling space. It takes air quality, human sensation, road quality, and greenery as the detection objects. An integrated particulate matter laser sensor, a light intensity sensor, a temperature and humidity sensor, noise sensors, and an 8K panoramic camera are used for multi-source data acquisition in the street. The device has a mobile power supply display and a secure digital card to improve its portability. The study took Beijing as a sample case. A total of 127.97 G of video data and 4794 Kb of txt records were acquired in 36 working hours using the street built environment data acquisition device. The efficiency rose to 8474.21% compared to last year. As an alternative to conventional hardware used for this similar purpose, the device avoids the need to carry multiple types and models of sensing devices, making it possible to target multi-sensor data-based street built environment research. Second, the device’s power and storage capabilities make it portable, independent, and scalable, accelerating self-motivated development. Third, it dramatically reduces the cost. The device provides a methodological and technological basis for conceptualizing new research scenarios and potential applications.