Abstract:Road furniture plays an important role in road safety. To enhance road safety, policies that encourage the road furniture inventory are prevalent in many countries. Such an inventory can be remarkably facilitated by the automatic recognition of road furniture. Current studies typically detect and classify road furniture as one single above-ground component only, which is inadequate for road furniture with multiple functions such as a streetlight with a traffic sign attached. Due to the recent developments in mobile laser scanners, more accurate data is available that allows for the segmentation of road furniture at a detailed level. In this paper, we propose an automatic framework to decompose road furniture into different components based on their spatial relations in a three-step procedure: first, pole-like road furniture are initially detected by removing ground points and an initial classification. Then, the road furniture is decomposed into poles and attachments. The result of the decomposition is taken as a feedback to remove spurious pole-like road furniture as a third step. If there are no poles extracted in the decomposition stage, these incorrectly detected pole-like road furniture-such as the pillars of buildings-will be removed from the detection list. We further propose a method to evaluate the results of the decomposition. Compared with our previous work, the performance of decomposition has been much improved. In our test sites, the correctness of detection is higher than 90% and the completeness is approximately 95%, showing that our procedure is competitive to state of the art methods in the field of pole-like road furniture detection. Compared to our previous work, the optimized decomposition improves the correctness by 7.3% and 18.4% in the respective test areas. In conclusion, we demonstrate that our method decomposes pole-like road furniture into poles and attachments with respect to their spatial relations, which is crucial for road furniture interpretation.