2018
DOI: 10.1109/tits.2017.2714691
|View full text |Cite
|
Sign up to set email alerts
|

Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
89
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 177 publications
(91 citation statements)
references
References 35 publications
0
89
0
2
Order By: Relevance
“…1). Deep learning approaches have set the benchmark on many popular object detection datasets, such as PASCAL VOC [17] and COCO [18], and have been widely applied in autonomous driving, including detecting traffic lights [19]- [22], road signs [23]- [25], people [26]- [28], or vehicles [29]- [33], to name a few. State-of-the-art deep object detection networks follow one of two approaches: the two-stage or the one-stage object detection pipelines.…”
Section: Deep Object Detectionmentioning
confidence: 99%
“…1). Deep learning approaches have set the benchmark on many popular object detection datasets, such as PASCAL VOC [17] and COCO [18], and have been widely applied in autonomous driving, including detecting traffic lights [19]- [22], road signs [23]- [25], people [26]- [28], or vehicles [29]- [33], to name a few. State-of-the-art deep object detection networks follow one of two approaches: the two-stage or the one-stage object detection pipelines.…”
Section: Deep Object Detectionmentioning
confidence: 99%
“…The experiments are conducted under normal light condition and weak light condition, and the IE-MSER method of this paper is compared with recent advance methods such as HOG+SVM [34] , FCN (Fully Convolutional Network) [35] , RGB_MSER [36] , YCbCr_DtBs [37] . The results of detection time and recall are shown in Table.1.…”
Section: Experiments and Analysis In Detection Stagementioning
confidence: 99%
“…Selain informasi jarak, manusia mampu melakukan klasifikasi terhadap objek yang ada di jalan dengan mudah, seperti trotoar, pohon, pejalan kaki dan kendaraan lainnya di jalan. Dengan teknik pembelajaran, banyak penelitian telah dilakukan dengan menggunakan kecerdasan buatan dan berhasil melakukan pengenalan jalan [5] maupun menklasifikasikan objek-objek yang beragam, seperti rambu lalu lintas [6], pejalan kaki [7] dan lubang di jalan [8], namun metode pembelajaran seperti ini membutuhkan dataset dalam jumlah yang sangat banyak dan bervariasi, serta membutuhkan kemampuan komputasi yang tinggi sehingga sulit diaplikasikan pada komputer sederhana secara real-time.…”
Section: Pendahuluanunclassified