2023
DOI: 10.1177/03611981231155911
|View full text |Cite
|
Sign up to set email alerts
|

Traffic Speed Sequence Prediction by Adaptive Weighted Long Short-Term Memory With Classification-Type Loss

Abstract: Accurate traffic speed prediction is necessary to promote the development of intelligent transportation systems. The construction of consummate models is challenging owing to nonlinearity, nonstationarity, and long-term dependence in traffic speed prediction. This study proposed an ensemble long short-term memory (LSTM) model that was based on adaptive weighting, in which ensemble learning was the main solution. First, a data preprocessing model based on a seasonal statistical model was introduced to reconcile… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 41 publications
0
0
0
Order By: Relevance