Automatic identification of garment design class might play an important role in the garments and fashion industry. To achieve this, essential initial works are found in the literature. For example, construction of a garment database, automatic segmentation of garments from real life images, categorizing them into the type of garments such as shirts, jackets, tops, skirts, etc. It is now essential to find a system such that it will be possible to identify the particular design (printed, striped or single color) of garment product for an automated system to recommend the garment trends. In this paper, we have focused on this specific issue and thus propose two new descriptors namely Completed CENTRIST (cCENTRIST) and Ternary CENTRIST (tCENTRIST). To test these descriptors, we used two different publically available databases. The experimental results of these databases demonstrate that both cCENTRIST and tCENTRIST achieve nearly about 3% more accuracy than the existing state-of-the art methods.