Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?
Sivarama Krishna Reddy Chidepudi,
Nicolas Massei,
Abderrahim Jardani
et al.
Abstract:Abstract. In this study, we used deep learning models with recurrent structure neural networks to simulate large-scale groundwater level (GWL) fluctuations in northern France. We developed a multi-station collective training for GWL simulations, using both “dynamic” variables (i.e. climatic) and static aquifer characteristics. This large-scale approach offers the possibility of incorporating dynamic and static features to cover more reservoir heterogeneities in the study area. Further, we investigated the perf… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.