Training neuro-fuzzy using flower pollination algorithm to predict number of COVID-19 cases: situation analysis for twenty countries
Ceren Baştemur Kaya,
Ebubekir Kaya
Abstract:Predicting the number of COVID-19 cases offers a reflection of the future, and it is important for the implementation of preventive measures. The numbers of COVID-19 cases are constantly changing on a daily. Adaptive methods are needed for an effective estimation instead of traditional methods. In this study, a novel method based on neuro-fuzzy and FPA is proposed to estimate the number of COVID-19 cases. The antecedent and conclusion parameters of the neuro-fuzzy model are determined by using FPA. In other wo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.