Training Robust T1-Weighted Magnetic Resonance Imaging Liver Segmentation Models Using Ensembles of Datasets with Different Contrast Protocols and Liver Disease Etiologies
Nihil Patel,
Mohamed Eltaher,
Rachel Glenn
et al.
Abstract:Image segmentation of the liver is an important step in several treatments for liver cancer. However, manual segmentation at a large scale is not practical, leading to increasing reliance on deep learning models to automatically segment the liver. This manuscript develops a deep learning model to segment the liver on T1w MR images. We sought to determine the best architecture by training, validating, and testing three different deep learning architectures using a total of 819 T1w MR images gathered from six di… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.