Trait prediction through computational intelligence and machine learning applied to soybean (Glycine max) breeding in shaded environments
Antônio Carlos da Silva Júnior,
Weverton Gomes da Costa,
Amanda Gonçalves Guimarães
et al.
Abstract:This study aims to identify more relevant predictors traits, considering different prediction approaches in soybean under different shading levels in the field, using methodologies based on artificial intelligence and machine learning. The experiments were carried out under different shading levels in a greenhouse and in the field, using sixteen cultivars. We have evaluated grain yield, which was used as a response trait, and 22 other attributes as explanatory traits. Three levels of shading were used to restr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.