The subject of this paper is the design and implementation of a robust dynamic feedback controller, based on the dynamic model of the four-wheel skidsteering RobuFAST A robot, undergoing high-speed turns. The control inputs are respectively the linear velocity and the yaw angle. The main objective of this paper is to formulate a sliding mode controller, robust enough to obviate the knowledge of the forces within the wheel-soil interaction, in the presence of sliding phenomena and ground-level fluctuations. Finally, experiments are conduced on a slippery ground to ascertain the efficiency of the control law.