2017
DOI: 10.1051/matecconf/201711302016
|View full text |Cite
|
Sign up to set email alerts
|

Trajectory generation for a walking in-pipe robot moving through spatially curved pipes

Abstract: Abstract. In this paper, a walking in-pipe robot is studied. The robot has six legs, each consisting of 3 links connected via rotary joints. The legs are attached to the robot's body. The work is focused on the problem of generating desired position and orientation for the robot's body, using a given footstep sequence. An iterative geometric algorithm for generating orientation sequence is proposed. The problem of finding the desired position of the center of mass of the robot's body is formulated as a problem… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(3 citation statements)
references
References 18 publications
0
2
0
1
Order By: Relevance
“…The author uses a heuristic method, that is, the direction vector, to get the direction of the robot. The trajectory generation requires multiple iterations, and it is not necessary to provide an accurate direction for the algorithm at the initial stage [34]. Subsequently, Savin et al [35], studied the motion planning algorithm based on random search random tree, namely RRT algorithm.…”
Section: Walking Robotmentioning
confidence: 99%
“…The author uses a heuristic method, that is, the direction vector, to get the direction of the robot. The trajectory generation requires multiple iterations, and it is not necessary to provide an accurate direction for the algorithm at the initial stage [34]. Subsequently, Savin et al [35], studied the motion planning algorithm based on random search random tree, namely RRT algorithm.…”
Section: Walking Robotmentioning
confidence: 99%
“…Одним из технических требований к профильной проходимости многозвенного внутритрубного робота является способность преодолевать изогнутые участки трубопровода. Учитывая большое число звеньев робота, пространственный характер и множество точек потенциального контактного взаимодействия элементов робота с трубопроводом и между собой, оценку профильной проходимости робота на этапе проектирования невозможно выполнить без проведения математического моделирования процесса его движения через изогнутые участки трубопровода с учетом силового взаимодействия движителей робота с трубопроводом [1][2][3][4][5][6][7][8][9][10][11][12][13]. Целесообразно для решения данной задачи использовать один из программных комплексов автоматизированного динамического анализа систем тел [14][15][16][17].…”
Section: Development Of the Multibody Model Of A Two-unit In-pipe Robot For Evaluation Of Its Capability To Move Through A Pipelineunclassified
“…These systems require complex control and path planning [22]. They also provide slower movement compared to wheeled and tracked robots.…”
Section: In-pipe Corneringmentioning
confidence: 99%