We experimentally investigate the motion of micro-swimmers consisting of several magnetic particles with different sizes. Swimmers are firstly formed by a static unidirectional field, and then manipulated by an additional dynamical perpendicular field. It is known that such magnetic-particle swimmers (or chains) driven by an external field would oscillate with the orientation of the field but lagging behind by a certain phase angle. In this work, we demonstrate if a swimmer subjected to a strong oscillating field which results in an instantaneous phase lag greater than , the swimmer can be steered perpendicularly to its original direction. Detailed swimming mechanism and trajectory are presented. By this innovative steering technology, orientation of a micro-swimmer can be effectively manipulated without a physical reconfiguration of the external field arrangement.