Manuscript provides a key technology, namely Input-Output Feedback Linearization Associates with Linear Quadratic Regulator (for short, IOFLALQR). The objective of this research is to study the possibility of integrating two control strategies, which includes input-output feedback linearization technique (for short, IOFL) and linear quadratic regulator controller (for short, LQR), for stabilization control of Furuta pendulum system. Furuta pendulum system belongs to the group of under-actuated robot systems. In this work, structure of IOFLALQR, control implementation, comparison of IOFLALQR and conventional LQR are adequately studied and discussed. Simulation is completed in MATLAB/Simulink environment and experiment is done on real-time experimental setup. Numerical simulation and experimental results show that the IOFLALQR are implemented on Furuta pendulum successfully. Besides, results have been drawn for demonstrating IOFLALQR better than another classical method.