In this paper, teleoperated control of a kinematically redundant, continuum slave manipulator with a nonredundant, rigid-link master system is considered. This problem is novel because the self-motion of the redundant robot can be utilized to achieve secondary control objectives while allowing the user to concentrate on controlling only the tip of the slave system. To that end, feedback linearizing controllers are proposed for both the master and slave systems, whose effectiveness is demonstrated using numerical simulations for the case of singularity avoidance as a subtask.