In 1961, Wang showed that ifAis the commutativeC*-algebraC0(X)withXa locally compact Hausdorff space, thenM(C0(X))≅Cb(X). Later, this type of characterization of multipliers of spaces of continuous scalar-valued functions has also been generalized to algebras and modules of continuous vector-valued functions by several authors. In this paper, we obtain further extension of these results by showing thatHomC0(X,A)(C0(X,E),C0(X,F))≃Cs,b(X,HomA(E,F)),whereEandFarep-normed spaces which are also essential isometric leftA-modules withAbeing a certain commutativeF-algebra, not necessarily locally convex. Our results unify and extend several known results in the literature.