The performance of semantic segmentation of RGB images can be advanced by exploiting informative features from supplementary modalities. In this work, we propose CMX, a vision-transformer-based cross-modal fusion framework for RGB-X semantic segmentation. To generalize to different sensing modalities encompassing various uncertainties, we consider that comprehensive crossmodal interactions should be provided. CMX is built with two streams to extract features from RGB images and the complementary modality (X-modality). In each feature extraction stage, we design a Cross-Modal Feature Rectification Module (CM-FRM) to calibrate the feature of the current modality by combining the feature from the other modality, in spatial-and channel-wise dimensions. With rectified feature pairs, we deploy a Feature Fusion Module (FFM) to mix them for the final semantic prediction. FFM is constructed with a cross-attention mechanism, which enables exchange of long-range contexts, enhancing both modalities' features at a global level. Extensive experiments show that CMX generalizes to diverse multi-modal combinations, achieving state-of-the-art performances on four RGB-Depth benchmarks, as well as RGB-Thermal and RGB-Polarization datasets. Besides, to investigate the generalizability to dense-sparse data fusion, we establish a RGB-Event semantic segmentation benchmark based on the EventScape dataset, on which CMX sets the new state-of-the-art. Code is available at https://github.com/huaaaliu/RGBX Semantic Segmentation