Loss-of-function, partial-function, alteredfunction, dominant-negative, temperature sensitive, interfering, contact, structural, unfolded, misfolded, dimeric, monomeric, non-cooperative, unstable, supertrans, superstable, intragenic suppressor. TP53 mutants are many, more than 2,000 in fact, and they can be very diverse. Sporadic; germline; gain-of-function (GoF); oncogenic; rebel-angel; yin and yang; prion-like; metastasis-inducer; mediator of chemo-resistance; modifier of stemness. TP53 mutants can impact important cancer clinical variables, in multiple, often subtle ways, as revealed by cell-based assays as well as animal models. Here, we review studies investigating TP53 mutants for their effect on sequencespecific transactivation function, and especially recent findings on how TP53 mutants can exhibit GoF properties. We also review reports on TP53 mutants' impact on cancer cell transcriptomes and studies with Li-Fraumeni patients trying to classify and predict phenotypes in relation to experimentally determined transcription fingerprints. Finally, we provide an example of the complexity of correlating TP53 mutant functionality to clinical variables in sporadic cancer patients. Conflicting results and limitations of experimental approaches notwithstanding, the study of TP53 mutants has provided a rich body of knowledge, mostly available in the public domain and accessible through databases, which is beginning to impact cancer intervention strategies.