This randomised, crossover, sham-controlled study explored the neural basis of source-monitoring, a crucial cognitive process implicated in schizophrenia. Left superior temporal gyrus (STG) and dorsolateral prefrontal cortex (DLPFC) were the key focus areas. Thirty participants without neurological or psychological disorders underwent offline sham and active tDCS sessions with specific electrode montage targeting the left STG and DLPFC. Source-monitoring tasks, reality monitoring (Hear-Imagine), internal source-monitoring (Say-Imagine), and external source monitoring (Virtual–Real) were administered. Paired t-test and estimation statistics was performed with Graphpad version 10.1.0. The Benjamini–Hochberg procedure was employed to control the false discovery rate in multiple hypothesis testing. A significant improvement in internal source monitoring tasks (p = 0.001, Cohen's d = 0.97) was observed, but reality monitoring tasks demonstrated moderate improvement (p = 0.02, Cohen's d = 0.44). The study provides insights into the neural mechanisms of source monitoring in healthy individuals and proposes tDCS as a therapeutic intervention, laying the foundation for future studies to refine tDCS protocols and develop individualized approaches to address source monitoring deficits in schizophrenia.