Background: Prior research on drug addiction has linked the frontopolar cortex and amygdala coupling to drug cue reactivity/craving. However, one-size-fits-all approaches for transcranial magnetic stimulation (TMS) over frontopolar-amygdala have led to inconsistent results. Objective: Here, we (1) defined individualized TMS target location based on functional connectivity of the amygdala-frontopolar circuit while people were exposed to drug-related cues, (2) optimized coil orientation for maximum electric field (EF) perpendicular to the individualized target, and (3) harmonized EF strength in targeted brain regions across a population. Method: MRI data were collected from 60 participants with methamphetamine use disorders (MUDs). and examined the variability in TMS target location based on task-based connectivity between the frontopolar cortex and amygdala. using psychophysiological interaction (PPI) analysis. EF simulations were calculated for fixed vs. optimized coil location (Fp1/Fp2 vs. individualized maximal PPI), orientation (AF7/AF8 vs. optimization algorithm), and stimulation intensity (constant vs. adjusted intensity across the population). Results: Left medial amygdala with the highest (0.31 +- 0.29) fMRI drug cue reactivity was selected as the subcortical seed region. The location of the voxel with the most positive amygdala-frontopolar PPI connectivity in each participant was considered as the individualized TMS target (MNI coordinates: [12.6,64.23,-0.8] +- [13.64,3.50,11.01]). Individualized frontopolar-amygdala connectivity showed a significant correlation with VAS craving scores after cue exposure (R=0.27, p=0.03). Averaged EF strength in a sphere with r=5mm around the individualized target location was significantly higher in the optimized (0.99 +- 0.21V/m) compared to the fixed approach (Fp1:0.56 +- 0.22V/m, Fp2:0.78 +- 0.25V/m) with large effect sizes (Fp1:p=1.1e-13,Hedges g=1.5, Fp2:p=1.7e-5,Hedges g=1.26). Adjustment factor to have identical 1V/m EF strength in a 5mm sphere around the individualized targets ranged from 0.72-to-2.3 (1.07 +- 0.29). Conclusion: Our results show that optimizing coil orientation and stimulation intensity based on individualized TMS targets led to stronger harmonized electric fields in the targeted brain regions compared to a one-size-fits-all method that hopefully helps to refine future TMS therapy for MUDs.