Abstract. In this paper we present the integration of a state-of-the-art ASR system into the Opencast Matterhorn platform, a free, open-source platform to support the management of educational audio and video content. The ASR system was trained on a novel large speech corpus, known as poliMedia, that was manually transcribed for the European project transLectures. This novel corpus contains more than 115 hours of transcribed speech that will be available for the research community. Initial results on the poliMedia corpus are also reported to compare the performance of different ASR systems based on the linear interpolation of language models. To this purpose, the in-domain poliMedia corpus was linearly interpolated with an external large-vocabulary dataset, the wellknown Google N-Gram corpus. WER figures reported denote the notable improvement over the baseline performance as a result of incorporating the vast amount of data represented by the Google N-Gram corpus.