Coexpression of genes within a functional module can be conserved at great evolutionary distances, whereas the associated regulatory mechanisms can substantially diverge. For example, ribosomal protein (RP) genes are tightly coexpressed in Saccharomyces cerevisiae, but the cis and trans factors associated with them are surprisingly diverged across Ascomycota fungi. Little is known, however, about the functional impact of such changes on actual expression levels or about the selective pressures that affect them. Here, we address this question in the context of the evolution of the regulation of RP gene expression by using a comparative genomics approach together with cross-species functional assays. We show that an activator (Ifh1) and a repressor (Crf1) that control RP gene regulation in normal and stress conditions in S. cerevisiae are derived from the duplication and subsequent specialization of a single ancestral protein. We provide evidence that this regulatory innovation coincides with the duplication of RP genes in a whole-genome duplication (WGD) event and may have been important for tighter control of higher levels of RP transcripts. We find that subsequent loss of the derived repressor led to the loss of a stress-dependent repression of RPs in the fungal pathogen Candida glabrata. Our comparative computational and experimental approach shows how gene duplication can constrain and drive regulatory evolution and provides a general strategy for reconstructing the evolutionary trajectory of gene regulation across species. T he coordinated expression of modules of functionally related genes, such as ribosomal proteins or oxidative phosphorylation enzymes, is often conserved at great evolutionary distances (1). This is consistent with a selective pressure to conserve coordinated transcript levels to maintain functional cellular modules. Recent studies have shown that the regulatory mechanisms controlling conserved modules can diverge, most notably by switching from one regulatory system to another while preserving coregulation (1, 2). However, because previous studies have typically relied on functional expression data from only one or two species, it is unknown whether these changes in regulatory mechanisms affect the expression levels of a module's genes at all or whether both coexpression and expression levels are conserved.A prominent example of a conserved regulatory module is the ribosomal protein (RP) module. Genes encoding RPs are tightly coexpressed in organisms from bacteria to humans (3, 4), consistent with a selective pressure to conserve coordinated transcript levels to maintain a stoichoimetric balance in ribosome assembly. The transcription factors controlling RP gene expression have changed several times since the last common ancestor of the Ascomycota fungi, which span Saccharomyces cerevisiae and Schizosaccharomyces pombe (4-6). These dramatic changes include the loss of the ancestral regulator Tbf1, the emergence of Rap1 as a key activator among the Hemiascomycota (4, 5), as well as the add...