“…Other metabolic changes were strikingly parallel to those during the carbon starvation response, in a way also conserved in variegated plants (Figure ). Some metabolic changes closely resembled features of carbon‐starving cells: increase in sugars and amino acid transporters (Contento et al ., ; Buchanan‐Wollaston et al ., ), increase in sucrose‐degrading enzymes (Buchanan‐Wollaston et al ., ; Baena‐González et al ., ), alteration of trehalose metabolism (Baena‐González et al ., ; Lunn et al ., ; Garapati et al ., ), increase in free amino acids (Brouquisse et al ., ; Araújo et al ., ; Hirota et al ., ), induction of asparagine synthetase (Brouquisse et al ., ; Baena‐González et al ., ), higher catabolism of amino acids (Contento et al ., ; Baena‐González et al ., ; Araújo et al ., ; Garapati et al ., ; Hirota et al ., ), induction of lipases (Buchanan‐Wollaston et al ., ; Baena‐González et al ., ), fatty acid β‐oxidation enzymes (Pistelli et al ., ; Baena‐González et al ., ), glyoxylate cycle enzymes (Pistelli et al ., ; Chen et al ., ; but not in Charlton et al ., ), and higher expression (respectively repression) of autophagy‐promoting (respectively inhibiting) genes (Garapati et al ., ; Üstün et al ., ; Hirota et al ., ). Carbon‐starved cells actively degrade their components, especially by enclosing them in autophagosomes addressed to the vacuole, where proteolysis releases amino acids as nutrients (Brouquisse et al ., ; Diaz‐Mendoza et al ., ; Hirota et al ., ).…”