During development, the endoderm gives rise to several organs, including the pancreas and liver. This differentiation process requires spatial and temporal regulation of gene expression in the endoderm by a network of tissue-specific transcription factors whose elucidation is far from complete. These factors include the Onecut protein hepatocyte nuclear factor-6 (HNF-6), which controls pancreas and liver development as shown in our previous work on Hnf6 knock-out embryos. In mammals, HNF-6 has two paralogs, Onecut-2 (OC-2) and OC-3, whose patterns of expression in the adult overlap with that of HNF-6. In the present work, we examine the expression profile of the three Onecut factors in the developing mouse endoderm. We show that HNF-6, OC-2, and OC-3 are expressed sequentially, which defines new steps in endoderm differentiation. By analyzing Hnf6 knock-out embryos we find that HNF-6 is required for expression of the Oc3 gene in the endoderm. We show that OC-3 colocalizes with HNF-6 in the endoderm and in embryonic pancreas and liver. Based on transfection, chromatin immunoprecipitation, and whole embryo electroporation experiments, we demonstrate that HNF-6 can bind to and stimulate the expression of the Oc3 gene. This study identifies a regulatory cascade between two paralogous transcription factors, sheds new light on the interpretation of the Hnf6 knock-out phenotype, and broadens the transcription factors network operating during development of the endoderm, liver, and pancreas.