Significant growth phase-dependent differences were noted in the transcriptome of the hyperthermophilic bacterium Thermotoga maritima when it was cocultured with the hyperthermophilic archaeon Methanococcus jannaschii. For the mid-log-to-early-stationary-phase transition of a T. maritima monoculture, 24 genes (1.3% of the genome) were differentially expressed twofold or more. In contrast, methanogenic coculture gave rise to 292 genes differentially expressed in T. maritima at this level (15.5% of the genome) for the same growth phase transition. Interspecies H 2 transfer resulted in three-to fivefold-higher T. maritima cell densities than in the monoculture, with concomitant formation of exopolysaccharide (EPS)-based cell aggregates. Differential expression of specific sigma factors and genes related to the ppGpp-dependent stringent response suggests involvement in the transition into stationary phase and aggregate formation. Cell aggregation was growth phase dependent, such that it was most prominent during mid-log phase and decayed as cells entered stationary phase. The reduction in cell aggregation was coincidental with down-regulation of genes encoding EPS-forming glycosyltranferases and up-regulation of genes encoding -specific glycosyl hydrolases; the latter were presumably involved in hydrolysis of -linked EPS to release cells from aggregates. Detachment of aggregates may facilitate colonization of new locations in natural environments where T. maritima coexists with other organisms. Taken together, these results demonstrate that syntrophic interactions can impact the transcriptome of heterotrophs in methanogenic coculture, and this factor should be considered in examining the microbial ecology in anaerobic environments.Despite the fact that microorganisms interact significantly within their ecological niche, this factor is usually not taken into account in the context of microbial physiology. One key limitation in this regard is that methodologies for examining the influence of one microbial species on another are typically based on either identification (e.g., 16S rRNA phylogeny [46]) or enumeration (e.g., fluorescent in situ hybridization [12]). Additional insights into functional outcomes of interspecies interactions are difficult to obtain. Yet such information is needed to relate pure culture cellular physiology to the beneficial and antagonistic elements present in microbial ecosystems.Syntrophic relationships between microorganisms with complementary growth physiologies are a key part of microbial ecosystems. One such example in certain anaerobic niches is the association between fermentative H 2 producers and methanogenic H 2 consumers, whereby the inhibitory H 2 formed as the by-product of sugar or peptide metabolism serves as an energy source for the generation of methane (26). This syntrophy can be found in niches ranging from the mammalian digestive tract (24) to anaerobic digesters used for domestic waste treatment (12). Molecular hydrogen is also a key chemical species in hydrothermal env...