Eimeria tenella rhoptry protein has the properties of a protective antigen. EtROP27 is a pathogenic gene that is detected via a transcriptome, but its expression pattern, immunogenicity, and potency are unknown. Therefore, a gene segment of EtROP27 was amplified and transplanted into the pET28a prokaryotic vector for the expression of the recombinant protein, and it subsequently purified for the generation of a polyclonal antibody. Then, RT-PCR and Western blotting were performed to understand the expression pattern of EtROP27. Subsequently, animal experiments were conducted to evaluate the immunoprotective effect of the recombinant protein with different immunizing doses (50, 100, and 150 μg). The results showed that the expression of EtROP27 gradually increased with the prolongation of infection time, reaching the highest level at 96 h and then decreasing. Additionally, EtROP27 is a natural antigen of coccidia that can stimulate the body to produce high levels of IgY. As with recombinant protein vaccines, the results of immune protection evaluation tests showed that the average weight gain rates of the immune challenge groups were significantly higher than that of the challenged control group, and their average lesion scores were significantly lower than that of the challenged control group. Furthermore, the oocyst excretion decreased by 81.25%, 86.21%, and 80.01%, and the anticoccidial index was 159.45, 171.47, and 166.75, respectively, for these groups. EtROP27 is a promising antigen gene candidate for the development of a coccidiosis vaccine.