BackgroundIn the absence of antiretroviral treatments (ARTs), a small group of individuals infected with HIV, including long-term non-progressors (LTNPs) who maintain high levels of CD4+ T cells for more than 7–10 years in the absence of ART and in particular a subgroup of LTNPs, elite controllers (ECs), who have low levels of viremia, remain clinically and/or immunologically stable for years. However, the mechanism of stable disease progression in LTNPs and ECs needs to be elucidated to help those infected with HIV-1 remain healthy. In this study, to identify the characteristics of gene expression profiles and biomarkers in LTNPs, we performed a meta-analysis using multiple gene expression profiles among LTNPs, individuals infected with HIV-1 without ART, individuals infected with HIV-1 with ART, and healthy controls.MethodsThe gene expression profiles obtained from the Gene Expression Omnibus (GEO) microarray data repositories were classified into three groups: LTNPs versus healthy controls (first group, 3 studies), LTNPs versus patients infected with HIV-1 without ART (second group, 3 studies), and LTNPs versus patients infected with HIV-1 with ART (third group, 3 studies). In addition, we considered a fourth group, patients infected with HIV-1 without ART versus healthy controls (3 studies), to exclude genes associated with HIV-1 infection in the three groups. For each group, we performed a meta-analysis using the RankProd method to identify and compare the differentially expressed genes (DEGs) in the three groups.ResultsWe identified the 14 common DEGs in the three groups when comparing them with each other. Most belonged to immune responses, antigen processing and presentation, the interferon-gamma-mediated signaling pathway, and T cell co-stimulation. Of these DEGs, PHLDA1 was up-regulated and ACTB and ACTG1 were down-regulated in all three groups. However, the rest of the up- or down-regulated genes were discordant in the three groups. Additionally, ACTB and ACTG1 are known to inhibit viral assembly and production, and THBS1 is known to inhibit HIV-1 infection.ConclusionsThese results suggest that significant genes identified in a meta-analysis provide clues to the cause of delayed disease progression and give a deeper understanding of HIV pathogenesis in LTNPs.Electronic supplementary materialThe online version of this article (10.1186/s12920-018-0443-x) contains supplementary material, which is available to authorized users.