2021
DOI: 10.21203/rs.3.rs-143356/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Transcriptome Analyses Revealed Adaptive-Responses in Livers of Mice Treated With Hua-Feng-Dan and Its “Guide Drug” Yaomu

Abstract: BackgroundHua-Feng-Dan is a patent Chinese medicine for stroke recovery and is effective against Parkinson’s disease models with modulatory effects on gut microbiota, but its effects on hepatic gene expression are unknown. This study used RNA-Seq to profile hepatic gene expression by Hua-Feng-Dan and its “Guide Drug” Yaomu.MethodsMice received orally Hua-Feng-Dan 1.2 g/kg, Yaomu 0.1-0.3 g/kg, or vehicle for 7 days. Liver pathology was examined, and total RNA was isolated for RNA-Seq. The bioinformatics, includ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 48 publications
(72 reference statements)
0
0
0
1
Order By: Relevance
“…Front-view Image Laneline PV VPG [76] 2017 -20K/20K PV -TUsimple [77] 2017 6.4K 6.4K/128K PV CULane [78] 2018 -133K/133K PV -ApolloScape [14] 2018 235 115K/115K PV LLAMAS [79] 2019 14 79K/100K PV 3D Synthetic [80] 2020 -10K/10K PV -CurveLanes [81] 2020 -150K/150K PV -VIL-100 [82] 2021 100 10K/10K PV OpenLane-V1 [83] 2022 1K 200K/200K 3D ONCE-3DLane [84] 2022 -211K/211K 3D -OpenLane-V2 [85] 。交通灯检测数据集可以被视为一种特定类别的图像 检测数据集。初始的车道线检测数据集 [14, 75∼82] 在二维图像坐标系中检测车道线,然后通过逆透视 变换(Inverse Perspective Mapping,IPM)投影矩阵获得三维车道线。由于 IPM 算法基于路面符 合平面假设的设定,而现实中大多数路面存在高度变化,导致在透视图中表示的车道线在投影到三 维空间的过程中容易出现错误。为解决这个问题,近几年的车道线数据集 [83,84] 提出直接进行三维 车道线检测的任务。由于车道线并不是车道的完备表达,无法包含车道方向与车道之间的连接等关 系,进一步地,OpenLane-V2 [85] 引入了车道的实例级表达方式,并且通过拓扑关系的构建赋予其 连接性及其与交通标识的关联性。建图类数据集的发展使模型预测结果所包含的信息越来越接近高 精地图。 Argoverse [16] [137] , [138] , [139] nuScenes [8] [140] , [141] , [142] Waymo [9] [143] , [144] , [145] Interaction [146] [147] , [148] , [149] MONA [150] Trajectory Comfort nuPlan [18] [151] , [152] , [153] CARLA [30] [154] , [155] , [156] MetaDrive [157] [158] , [159] , [160] Apollo [161] [162] , [163] , [164] Path Planning Maps for Road Network Routes Connecting to Nod...…”
Section: Front-view Gps and Imu And Infrared Camera -unclassified
“…Front-view Image Laneline PV VPG [76] 2017 -20K/20K PV -TUsimple [77] 2017 6.4K 6.4K/128K PV CULane [78] 2018 -133K/133K PV -ApolloScape [14] 2018 235 115K/115K PV LLAMAS [79] 2019 14 79K/100K PV 3D Synthetic [80] 2020 -10K/10K PV -CurveLanes [81] 2020 -150K/150K PV -VIL-100 [82] 2021 100 10K/10K PV OpenLane-V1 [83] 2022 1K 200K/200K 3D ONCE-3DLane [84] 2022 -211K/211K 3D -OpenLane-V2 [85] 。交通灯检测数据集可以被视为一种特定类别的图像 检测数据集。初始的车道线检测数据集 [14, 75∼82] 在二维图像坐标系中检测车道线,然后通过逆透视 变换(Inverse Perspective Mapping,IPM)投影矩阵获得三维车道线。由于 IPM 算法基于路面符 合平面假设的设定,而现实中大多数路面存在高度变化,导致在透视图中表示的车道线在投影到三 维空间的过程中容易出现错误。为解决这个问题,近几年的车道线数据集 [83,84] 提出直接进行三维 车道线检测的任务。由于车道线并不是车道的完备表达,无法包含车道方向与车道之间的连接等关 系,进一步地,OpenLane-V2 [85] 引入了车道的实例级表达方式,并且通过拓扑关系的构建赋予其 连接性及其与交通标识的关联性。建图类数据集的发展使模型预测结果所包含的信息越来越接近高 精地图。 Argoverse [16] [137] , [138] , [139] nuScenes [8] [140] , [141] , [142] Waymo [9] [143] , [144] , [145] Interaction [146] [147] , [148] , [149] MONA [150] Trajectory Comfort nuPlan [18] [151] , [152] , [153] CARLA [30] [154] , [155] , [156] MetaDrive [157] [158] , [159] , [160] Apollo [161] [162] , [163] , [164] Path Planning Maps for Road Network Routes Connecting to Nod...…”
Section: Front-view Gps and Imu And Infrared Camera -unclassified