The purpose of the research is to assess the level of accumulation of copper, zinc, manganese, cobalt and iron by peas using various cultivation technologies. The work was carried out in 2020–2023 on chernozem typical of the Kursk region. Four agrotechnologies of pea cultivation were studied, based on various methods of basic tillage: traditional, differentiated, minimal, direct sowing. The copper content was highest in the roots with minimal technology (13.37 mg/kg), in straw and grain – with direct sowing (6.16 and 5.74 mg/kg). The maximum amount of zinc in the roots was provided by traditional technology and direct sowing (34.10 and 34.63 mg/kg), in straw – differentiated (13.35 mg/kg), in grain ‒ traditional and differentiated (28.06 and 28.86 mg/kg) technologies. The highest content of manganese in the roots was with differentiated technology (369.95 mg/kg), in straw and grain – with direct sowing (68.11 and 55.30 mg/kg). The maximum amount of cobalt in the roots was observed with direct sowing (7.05 mg/kg), in straw – with differentiated technology (4.44 mg/kg), in grain – with minimal technology and direct sowing (3.51 mg/kg). The iron content in the roots did not differ significantly with traditional, minimal technologies and direct sowing, and with differentiated, it decreased by 16.3…26.0 mg/kg. In pea straw, the lowest amount of iron was found with differentiated technology (270.27 mg/kg). During direct sowing, the highest concentration of iron in the grain was noted (135.7 mg /kg). The coefficient of biological accumulation of trace elements by grain was higher than by roots and straw. The highest values of this grain index for copper (24.33), manganese (27.68), cobalt (12.14) and iron (9.19) were noted with direct sowing, and for zinc – with differentiated (28.36) and minimal (28.31) technologies.