Tobacco smoke and red/processed meats are well-known risk factors for colorectal cancer (CRC). Most research has focused on studies of normal colon biopsies in epidemiologic studies or treatment of CRC cell lines
in vitro
. These studies are often constrained by challenges with accuracy of self-report data or, in the case of CRC cell lines, small sample sizes and lack of relationship to normal tissue at risk. In an attempt to address some of these limitations, we performed a 24-hour treatment of a representative carcinogens cocktail in 37 independent organoid lines derived from normal colon biopsies. Machine learning algorithms were applied to bulk RNA-sequencing and revealed cellular composition changes in colon organoids. We identified 738 differentially expressed genes in response to carcinogens exposure. Network analysis identified significantly different modules of co-expression, that included genes related to MSI-H tumor biology, and genes previously implicated in CRC through genome-wide association studies. Our study helps to better define the molecular effects of representative carcinogens from smoking and red/processed meat in normal colon epithelial cells and in the etiology of the MSI-H subtype of CRC, and suggests an overlap between molecular mechanisms involved in inherited and environmental CRC risk.