Environmental stress can result in epigenetic modifications that are passed down several generations. Such epigenetic inheritance can have significant impact on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. Here, we used whole-genome bisulfite sequencing on individual water fleas (Daphnia magna) to assess whether environmentally-induced DNA methylation can persist for up to four generations. Genetically identical females were exposed to a control treatment, one of three natural stressors (high temperature, zinc, microcystin), or the methylation-inhibitor 5-azacytidine. After exposure, lines were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) between controls and F1 individuals whose mothers (and therefore they themselves as germ cells) were exposed to one of the three natural stressors. Between 46% and 58% of these environmentally-induced DMPs persisted until generation F4 without attenuation in their magnitude of differential methylation. DMPs were enriched in exons and largely stressor-specific, suggesting a possible role in environment-dependent gene regulation. In contrast, treatment with the compound 5-azacytidine demonstrated that pervasive hypo-methylation upon exposure is reset almost completely after a single generation. These results suggest that environmentally-induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of fresh-water communities.Author summaryWater fleas are important keystone species mediating eco-evolutionary dynamics in lakes and ponds. It is currently an open question in how far epigenetic inheritance contributes to the ability of Daphnia populations to adapt to environmental stress. Using a range of naturally occurring stressors and a multi-generational design, we show that environmentally-induced DNA methylation variants are stably inherited for at least four generations in Daphnia magna. The induced variation in DNA methylation are stressor-specific and almost exclusively found in exons, bearing the signatures of functional adaptations. Our findings imply that ecological adaptations of Daphnia to seasonal fluctuations can be underpinned by epigenetic inheritance of DNA methylation without changes in gene frequencies.